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Surface properties and flow of granular material
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Monodisperse and 1:1 bidisperse disk assemblies have been studied by a very efficient numerical
algorithm for a nearly half-filled two-dimensional rotating drum. The model simulates a limiting
case of granular systems emphasizing geometrical factors during spatial organization of the filling.
The analysis of geometrical properties of the free slope gives insight into one of the size segrega-
tion mechanisms which is active in this model. Segregation occurs for all ratios of the disk radii.
Statistical analysis of the surface flow of large disks shows finite-size scaling. Almost perfect tem-
poral periodicity has been observed in monodisperse fillings, while the spatial disorder induced by

bidispersity destroys this periodic behavior.

PACS number(s): 64.60.Cn, 81.35.+k, 64.75.+g, 46.10.+2

I. INTRODUCTION

The behavior of granular materials is of great techno-
logical interest, and its investigation has a history of more
than two hundred years. Nevertheless, the basic physical
understanding of granular media is far from being com-
plete. Complex phenomena, such as disorder, pattern
formation, threshold dynamics, segregation, etc., make
the granular systems very difficult to study; therefore
simplified models may help considerably to interpret and
understand experimental results.

In recent years, the idea of “self-organized criticality”
(SOC) proposed by Bak, Tang, and Wiesenfeld [1] trig-
gered a lot of experimental and theoretical work on relax-
ation processes in granular materials. They introduced
a sandpile model as a general metaphor of complex dy-
namical systems evolving spontaneously into a state with
scale-invariant properties in space and time. Computer
simulations predicted, for example, that the size distribu-
tion function of avalanches running down the free slope
of a growing or tilting sandpile obeys a power law. Ex-
periments [2-5] have later shown that the SOC picture
gives an appropriate description in a restricted range
only, namely, at rather small system sizes and at very low
driving rate. Nevertheless, the analysis of avalanche pro-
cesses in their own right became a central subject of ex-
perimental [6-10] and theoretical [11-14] investigations.

Recently, we have developed a computationally very
efficient model [15,16] to simulate granular assemblies in
a two-dimensional rotating drum. The model, which we
call the “bottom to top restructuring” (BTR) algorithm,
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describes well the radial size segregation phenomena in
bidisperse systems [15-17], in complete agreement with
recent experiments [18-20]. Moreover, we have estab-
lished an evaluation method based on following the tra-
jectory of a single tagged particle [17]. We demonstrated
“ergodicity,” i.e., we showed that the time averaged sta-
tistical properties of single trajectories are closely related
to those of the whole assembly [17].

Segregation in a rotating drum is based on flow down
the free surface. Therefore in this work we concentrate on
a detailed investigation of surface properties and surface
flow processes in our model.

We show that the free surface has strong local slope
fluctuations (niches) suggesting that size segregation oc-
curs for any ratio of the particle radii different from 1. As
our model implicitly assumes a certain amount of vibra-
tion, one gets a continuous surface flow instead of discrete
avalanches. It is characterized by surface activity which
should correspond, e.g., to the intensity of emitted sound
in experiments [6,8,9].

Furthermore, we find that the geometrical disorder in
a bidisperse filling, which is the single noise source in the
BTR model, destroys the periodicity observed for surface
flow in monodisperse assemblies. The dynamics of grains
in real experimental systems are influenced by inertial
effects, collective organization, etc., which are not taken
into account in our model. Nevertheless, we think that it
reveals new aspects of the geometrical factors in granular
assemblies.

II. THE MODEL

Our simulations are based on a modified version of
Jullien, Meakin, and Pavlovitch’s model [21,22], which
was introduced to simulate size segregation in vertically
shaken granular media. The common root is a continuous
version of the ballistic deposition model [23] which has
been studied by several authors in the context of surface
roughening. Let us imagine that disks are deposited one
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by one along randomly chosen vertical trajectories onto
a surface. When a disk touches the surface for the first
time, it takes the path of steepest descent until it reaches
a local minimum. In this minimum it gets stuck forever,
thereby changing the local surface. Inertia and elasticity
are neglected; thus bouncing of the disks or structural
relaxation are forbidden. These conditions could be re-
garded as the limit of large static friction and low energy
restitution coefficient (inelastic collisions).

Rotation is implemented in the following way. As a
first step, the whole packing is rotated rigidly by a small
angle A¢ < 1°. Then one lists all the disks in order of
increasing heights of their centers. All disks are allowed
to relax to the nearest local minimum sequentially from
bottom to top ignoring the presence of higher particles.
This is reasonable either if the particles move on parallel
trajectories, or if the system allows for sufficient dila-
tancy that higher particles easily give way to lower ones.
It turns out that the dynamics in a rotating drum ful-
fills these physical conditions, the bulk being essentially
rigidly rotated and large displacements occurring mainly
via flow at the surface of the packing.

In order to prevent small and large disks from slip-
ping back into their original positions or from exchang-
ing places after the rigid rotation, the drum has to be
“sticky” in a small region at the bottom. Physically, this
corresponds to the fact that for small slopes the static
friction at the wall is larger than the tangential compo-
nent of the gravitation force.

The model had been checked by tracing the moves of
all disks during a single time step (see Fig. 1). Unphysi-
cal restructuring was observed only in exceptional cases
[15,16].

What is the physical meaning of A¢? We recall that
after each elementary rotation exactly one BTR step fol-
lows. This restructuring step can be interpreted as a
single period of a superimposed vertical vibration [24],

FIG. 1. Traces of the particles in one elementary rotational
step.

which allows some small structural rearrangements deep
inside the filling too, not only on the free surface. Thus
Ad¢ is the ratio of the rotational speed and the frequency
of the vibration: The smaller its value, the larger is the
number of restructuring cycles during a unit rotation.
We will analyze the effects of changing A¢ later on. Most
of the following results were obtained by fixing this pa-
rameter at a value of A¢ = (1/99/10)° to avoid perfect
periodicity of the revolutions.

With this simple and fast BTR algorithm we could re-
produce the size segregation in a wide parameter range
[15-17]. Figure 2 shows the configuration after one revo-
lution of the drum started from a homogeneous random
filling. In accordance with the experiments [18,20], we
obtain radial segregation already within the first rota-
tion. This means that geometrical effects alone can lead
to size segregation in these systems.

The absence of an implicit time scale and the restric-
tions on friction and energy restitution mentioned above
limit the applicability of our model. These limitations are
absent in molecular dynamics simulations [14,25]. The
BTR algorithm is a minimal model, which reveals the
role of geometry in a complex mixture of dynamical ef-
fects. An additional benefit of the simplification is a su-
perior computational efficiency compared to molecular
dynamics calculations.

III. SURFACE PROPERTIES

The primary reason for segregation is based on sur-
face properties [15,18]. The mechanism is similar to the

FIG. 2. A (transient) configuration after one total revolu-
tion in a rotating drum of radius R = 90.0 at A¢ = 0.2. The
radius of the large disks (open circles) is r; = 1.0, while that
of the small disks (filled circles) is 7, = 0.5. The number of
the large and small disks is N; = 2503 and N, = 2492, respec-
tively. The total occupied area is about 95% of the half-filling
area.
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one which is described by the “random fluctuating sieve
model” of Savage and Lun [26]. Therefore we concentrate
first on the characterization of the free slope. We have
measured the distribution function of the local slopes ®
given by the angle between the horizontal axis and the
connecting line of the centers of two neighboring disks on
the top layer (Fig. 3). If the neighboring disks have dif-
ferent sizes, this connecting line is not parallel to the tan-
gent. Therefore we distinguish the partial distributions
defined in Fig. 3. Typical results are plotted in Fig. 4
and Fig. 5. These were obtained by measuring the local
slopes of a bidisperse assembly consisting of a 1:1 mixture
of disks with size ratios r =r,/r; =0.5and r =09 in a
drum of radius R = 90 [27] during 100 total revolutions,
omitting three initial revolutions to reach stationary be-
havior. There are persistent oscillations as a consequence
of the rotation. Stationarity refers to the time averages
over one period. In Fig. 4(a) we plotted two curves, the
total angle distributions for R = 90 and R = 120, to
demonstrate that the distribution functions are indepen-
dent of the drum radius. Note that the measurements
were performed after finishing every rearrangement. The
uppermost part (h > 1.5R) was excluded from the eval-
uation, because it differs from the rest of the system. In
Fig. 6 the appropriately normalized partial distributions
P(®y) [Fig. 4(b) and Fig. 5(b)] are plotted together with
the local angle distribution of a monodisperse system.
Two conclusions can be drawn considering the shapes of
these curves

(i) Let us consider a local configuration of two touching
large disks (a local niche) on the surface with an angle 9
between their connecting line and the vertical axis (thus
¥ = 90° — &, cf. Fig. 3). It is easy to see that no other
disk rolling down over them can be stopped, if ¢ < 30°.
However, if 1 > 30°, this niche can accommodate other
disks up to a size r,, which can be expressed by simple
geometrical relations:

FIG. 3. Definition of the local slope ®,, for the four el-
ementary surface configurations. The first (second) index
refers to the disk above (below) the other; both of them can
be s () for the smaller (larger) size. The dashed lines indi-
cate the angle of repose a, which is given by a linear fit to
the surface.
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FIG. 6. Normalized partial distribution densities P(®;) of
the local slopes ®;; for neighboring large disks in a half-filled
drum with R = 90 measured during 100 revolutions.

rolls over. That is, there is no critical ratio of radii for
size segregation in this model; any bidisperse mixture will
show size separation if the radius of the drum R is large
enough.

(ii) In all cases, local angles very close to the limit
of instability, 90°, are present in a large number. This
means that an arbitrarily small rotation should result in
surface rearrangements. This observation, together with
the absence of periodicity in flow sequences to be shown
later, implies that there is no hysteresis in this model.
The angle of repose «,, which is the slope of the filling
after surface relaxations, is equal to the maximal angle
of stability a,, at which surface flow initiates. The ab-
sence of hysteresis may be a consequence of the lack of
inertia in this model, which impedes overshooting in re-
laxation processes. It could also be due to the fact that
disks start to roll down as soon as they become unsta-
ble in the gravitational field (i.e., ® > 90°), whereas
particles which tend to glide rather than to roll would
still be held in place by static friction. Another possible
reason can be the presence of vibrational effects, which
destroys hysteresis in experimental systems as well [2].
However, we were able to reduce the vibrational inten-
sity by increasing A¢, without seeing any indication for
hysteresis. Whether the introduction of inertial effects
into this model and a more realistic treatment of static
friction results in the appearance of hysteresis or not is
not clear at present and needs further investigation. Note
that the sizes of the drums in our simulations were suf-
ficiently large to avoid the geometrical finite-size effect
[11], which would also result in the disappearance of the
hysteresis.

In Figs. 4 and 5 the total weights of the local configura-
tions are also indicated. The smaller the ratio of the disks
r the more pronounced the lack of smaller disks in the
surface region. This change can be considered as an alter-
native measure of segregation [17]; therefore we plotted
the ratio Pj;/P,, against the ratio of disk radii r (Fig. 7).
The dashed line fit shows a continuous power law decay
with an exponent approximately equal to —1.7, strength-
ening the above observations that there is no critical ratio
for size segregation.

An important global characteristic of granular pack-
ings is the angle of repose «a,.. This is defined as the slope
of the best linear fit to the surface after an avalanche.
The angle of repose a, in bidisperse mixtures is a strongly
fluctuating quantity with a Gaussian distribution and
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FIG. 7. The ratio of the weights P;;/P;, of partial configu-
rations of neighboring large and small disks on the surface as
a function of the ratio of radii ». The dashed line is given by
the fit Py/Pss ~ r~ 7. The results were obtained during 20
revolutions in a half-filled drum of R = 90.

with a power law correlated spectrum (see Sec. V). Here
we show the dependence of the average o, on the ratio
r of the disk radii (Fig. 8). (During the measurement a
similar upper height cutoff was applied as in the case of
the distribution of local angles.) Also the average angles
(®) are plotted, which were obtained from the total local
angle distributions [see Figs. 4(a) and 5(a)] as

(@):/QP(@)d@ . 2)

Note that (®) gives a lower bound for the angle of repose
a,, because the local angles without the lengths of the
connecting lines do not characterize the orientation of the
surface uniquely. The more similar the sizes of disks, the
closer the value of (®) to a,.

The monodisperse system is completely different from
the mixed cases. Figure 9 shows the connecting networks
of monodisperse fillings in the steady state [15]. This
steady state is reached after a less than 90° rotation.
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FIG. 8. Angle of repose o, (filled circles with error bars)
and the average local angle (®) (diamonds) as a function of
the ratio of radii » in a half-filled drum of R = 90 measured
during 20 revolutions. The error bars are not statistical errors,
but standard deviations of the fluctuation of a.
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The packing contains well ordered regions and almost
time independent “domain walls.” This structure is self
similar in the sense that it does not depend on the size
of the drum. For example, the sharp break of the slope
is always situated at a height of h =~ 0.66R for the same
level of filling of the drum. This curved surface makes it
difficult to define an angle of repose.

IV. SURFACE FLOW

After the characterization of the static properties of the
slope, let us turn our attention to the motion of disks.
The motion of a single disk is composed of an almost rigid

K
.
S

%

53e%
oSo%e8s

X
XXX
(XS
:"
X

<3
SIS
SOOI

S
O
S
555
s
ARXKKRAES
QRRHKKS
XS

RO
OSIKSS
KKK
"”“0’
ot sseeds
d0tatotototes
RS
tetoo0s
KRR
R
200

N
o Ssetsetees
BISSISID
SIS
RIS
OSSO
N

%%
X XXX
s

QKK

9
K
XX
X
XX
&
)
"

X
o
00008
X
X

oo oo
SRS
““:“:‘:““\ >
D 3
SISO
X
GO SSISSIRI,
S OSSOSO S SSSSSSSS
OSSR SIS
OSSR SRR
ISSLI 50

XX 525
XK EEERLEISK:
eoq&p
X

%
%

R
LIRS
ﬂsw#?f‘

X L
RREBLE
LA
LRERRRL

o,
L
%
R
o,
&

FIG. 9. Typical configuration of a monodisperse system in
a drum of (a) R = 90 and (b) R = 120. The network was
obtained by connecting the centers of contacting disks with
lines.

rotation upward with some superimposed random walk
due to the vibration and a fast rolling down in the flow re-
gion close to the surface. Usually a large number of disks
are involved in structural rearrangements after every el-
ementary rotational step. To characterize quantitatively
these collective displacements, we define the activity s as
a sum of the Euclidean distances between the initial and
final positions of every disk in the flow region:

s = Z ) (3)

JEFR

MEZNG

where the superscript f (¢) denotes the final (initial) con-
figuration, and the summation runs over the disks j sit-
uated in the flow region which is defined in an empirical
way. An exact definition for the depth of the flow re-
gion is not available: Although the mean displacement
of disks continuously decreases with increasing distance
from the free surface, it has a nonzero value everywhere.
Therefore we measured the average angle of repose a,
in a given setup and drew a cutting line parallel to the
average surface at a distance 0.225R from the center of
the drum. The drum was filled up to the distance 0.05R.
Disks above this cutting line have been taken into account
in the calculations. This definition of activity makes the
analysis of surface flow feasible with the same restric-
tions, as, e.g., the total emitted sound of grains measured
in several experiments [6,8,9]. Obviously, identification of
separate avalanches at the surface is impossible, because
every particle is involved more or less in the restructuring
process. Instead, one could consider a large total activity
as connected to the presence of large avalanches. Beside
the total activity, the partial activities, i.e., the separate
activities of small and large disks, were also evaluated.

We measured the distribution functions P(s, R) of the
activity s for different drum sizes R. The calculations
were performed during 100 revolutions beginning after
three initial total rotations. The curves are normalized
in the usual way, [ P(s,R)ds = 1, and rescaled by the
finite-size scaling ansatz [28]

P(s,R) ~ R f (55) (4)

where f is a scaling function and v and ( are scaling
exponents. The normalization immediately implies

v=_p, (5)

as it is independent of R. In Fig. 10 the rescaled distribu-
tion functions are plotted separately for the small disks,
for the large disks, and for the total activity of all disks.

The finite-size scaling hypothesis gives a satisfactory
result only for the large disks [see Fig. 10(b)]. As an
independent check, one can obtain a scaling relation be-
tween the exponents. Let us suppose that the mean value
M of the activity s depends on the size of the system as

M(R) = / sP(s, R)ds ~ R™ (6)

with an exponent m. Inserting Eq. (4) into Eq. (6) and
integrating it with the substitution
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FIG. 10. Distributions P(s) of the activity s rescaled as
in Eq. (4). The exponent values 3 = v = 3.01 are used in
every case (see text). Every calculation was performed in a
half-filled drum with » = 0.5 and A¢ ~ 1° at drum radii
R = 60 (filled squares), R = 90 (open circles), R = 120
(filled diamonds), and R = 180 (crosses). (a) Distributions
for small disks. For a limited range of scaled activity between
1072 and 107% a power law [Eq. (10)] could be fitted with
an effective, R dependent exponent 7g shown in the inset.
(b) Distributions for large disks. The dashed line shows an
exponential fit [Eq. (9)] with 1/a = 632.5. (c) Distributions
for the total activities of all disks. The dashed line shows a
fit of Eq. (11) with 75 = 0.68 and 1/a} = 67.97.

so that with Eq. (5) v, 8, and m all have to be equal. We
found numerically that the values 8 = v = m = 3.01 +
0.05 result in a good collapse for the curves in Fig. 10(b).
The cubic scaling of the mean activity, M(R) ~ R3, is
a consequence of mass conservation. As the complete
filling is turned over in a number of steps independent of
R, a fixed fraction of it (o< R?) has to move down the
free surface (o< R) in every time step.

The decaying part of the scaling function f; (the sub-
script ! refers to the large disks) is consistent with an
exponential fit [dashed line in Fig. 10(b)]:

z
fi(z) ~ exp (—a) , (9)
with a characteristic scaled activity a.

Finite-size scaling cannot be observed for the activity
of small disks [Fig. 10(a)]. However, one can see a power
law behavior in a restricted range:

fo(2)~ (27", (10)

where 7r decreases gradually with the increase of system
size R [see the inset in Fig. 10(a)]. This is plausible, be-
cause due to the segregation the number of small disks
participating in the surface activity does not change in
proportion to the drum volume. Actually, it increases
faster than R2. This explains the enhanced scaled prob-
ability for large activities for larger drum sizes. The log-
arithmic fit shown in the inset of Fig. 10(a) gives a pre-
diction that this behavior changes at a finite system size
R =~ 690. This size (approx 290000 disks) is unfortu-
nately beyond our computational capabilities; therefore
we do not consider this fit to be well established. The
change of the exponent obviously rules also out the pres-
ence of finite-size scaling; the model is not critical from
this point of view.

The distribution of the total activities [Fig. 10(c)] is
the convolution of the partial activities. The finite-size
scaling hypothesis does not work because of the contri-
bution of the small disks. The best fit is obtained by the
following form [dashed line in Fig. 10(c)]:

fo(2) ~ (2) R exp (— : ) , (11)

*
Qp

where 73 and a} are size dependent parameters. An
approximate relationship is valid for the exponents of
Eq. (10) and Eq. (11), namely, 74 ~ 7r/3.

We also measured the size distribution of the activity d
of a single tagged particle in the flow region. d is defined
similarly to the collective case as the Euclidean displace-
ment during one simulational step. The results are plot-
ted in Fig. 11, for both a large and a small tagged particle.
There is a characteristic breaking point at a length of ap-
proximately five large disk radii, below which a restricted
scaling is observable with an exponent —2.0 + 0.1 for the
small and —1.8 + 0.1 for the large disk. A power law as-
sumption gives a poor fit beyond the breaking point for
both cases; however, the results are better for the dis-
tribution functions of the small disk. Finite-size scaling
is absent for both disk sizes, contrary to the collective
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FIG. 11. Size distribution P(d) of the single tagged particle
activity d in the flow region for different drum sizes. Lower
curves for a small disk of radius »; = 0.5 and upper ones for
a large disk obtained in a 1:1 mixture during 100 revolutions.

activities of the large disks; the shape of the functions
changes monotonically with the drum size.

The only experimental work in a rotating drum known
to us [9], in which an avalanche size statistics was shown,
is not closely related to our model. They measured the
bottom contact-line fluctuation of the granular material
in a rotating cylinder. Abrupt jumps of the contact-line
position indicated avalanches, and the amplitude distri-
bution of jumps was related to the avalanche size distri-
bution. Apart from the fact, that this measurement was
performed in a three-dimensional drum, the method is
not able to record local avalanches on the slope. There-
fore the sharply peaked distribution obtained is not com-
parable with our results. Unfortunately, in other ex-
periments [2,6,8] which were much closer to our model,
the avalanche size distribution was not obtained. They
concentrated on the avalanche duration and delay time
statistics, which are not available in the BTR model be-
cause of the lack of an intrinsic time scale. Surprisingly,
experimental results on building sandpiles [3—5] have a
stronger resemblance to our observations. For example,
Rosendahl, Vekié, and Kelley [5] measured the size dis-
tribution of avalanches on relatively small sandpiles built
on a precision balance. They observed also a wide dis-
tribution of avalanche sizes, a characteristic break point
similar to Fig. 11, and a lack of finite-size scaling. If we
accept that a gradual tilting of a granular packing is not a
completely different excitation from adding grains to the
top of a pile, we can conclude that geometrical factors
are crucial in formation of surface flow in real systems as
well.

The simulational steps define an artificial scale which
makes it possible to describe the “temporal behavior” of
the sequence of surface flow. Figure 12 shows a typical
autocorrelation function for surface flow sequences (a) in
bidisperse systems, and (b) in a monodisperse one. The
monodisperse system is nearly periodic. The appropriate
power spectrum (not shown here) is highly peaked for
the monodisperse case, and shows a horizontal plateau
(white noise) for the bidisperse one. The surface activity
distribution in a monodisperse packing is also markedly

1.0+ . . e _
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A(n) 041 b
0.2 2
0.0 -
024 2

1.0 4 :
]

0.8 E
0.6
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0.0

-0.2

0o 1000

FIG. 12. Normalized autocorrelation A(n) ~ (s(n')s(n’
+n)) of the total activity as a function of the number of rota-
tional steps n in a (a) bidisperse (r = 0.5) and (b) monodis-
perse system with R = 90.

different from that in the bidisperse systems; it consists of
several sharp peaks around some special values (Fig. 13).
These observations reveal the role of packing disorder in
bidisperse assemblies. This disorder, which is the only
noise in the model apart from numerical inaccuracies, is
enough to destroy the periodicity of a monodisperse sys-
tem. This periodicity arises because of the small number
of available local configurations constrained by the circu-
lar wall.

V. THE EFFECT OF DIFFERENT ROTATION
STEPS

Finally, we describe the effects of different elementary
rotation steps A¢. As we mentioned, this parameter
characterizes the ratio of a slow rotation and a weak ver-

0.0015

0.0010

P(s)

0.0005

0.0000
0 2000 4000 6000 8000
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FIG. 13. Distribution P(s) of the activity s in a monodis-
perse system at R = 90 measured over 100 revolutions.
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tical vibration. The most significant effect of changing
Ad¢ is that the angle of repose a,. changes (see Fig. 14 ).
This can be understood by comparing with the experi-
ments of Jaeger, Liu, and Nagel [2], in which they stud-
ied the relaxation of the slope in a rotating and vibrating
drum. Their main observation was that the angle of re-
pose decreases when the rotation stops and a vibrational
agitation is switched on. Moreover, the larger the vi-
brational intensity, the faster the decrease of the slope.
They introduced a simple model to explain this behavior
[2]. The key assumptions are that the mechanical vibra-
tion can be considered as an effective temperature, and
the escape rate of grains over the barrier of some average
potential formed by the neighbors is exponentially de-
pendent on the inverse effective temperature. Without
going into the details, we recall their equation for the
slope change [2],

d_t = —Aae® ) (12)

where « is the time dependent angle of repose and A
and c are constants which depend on the intensity of the
vibration. When a permanent rotation with an angular
velocity w is present together with some vibration, the
following equation trivially follows for the steady angle
Qag:

day,
dt

In Fig. 14, the fit based on this equation is also plotted.
Here we used the assumption that the frequency of the
vibration is fixed, and A¢ is proportional to the rota-
tional velocity w. Recall that A¢ in our model is a ratio
of the rotational velocity and the vibrational frequency;
therefore the change of A¢ can also be interpreted in the
opposite way: fixed angular velocity w and changing vi-
brational frequency. In spite of the apparent deviations
mainly at larger rotational steps, the agreement is satis-
factory (at least it is much better than with any other
simple test function of two parameters). The limitations

=0=w— Aage* . (13)
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FIG. 14. Average angle of repose o, at the steady state as
a function of the size of rigid rotation steps A¢ measured in
a system with R = 90 and r = 0.5 over 20 revolutions. The
solid line is a fit based on Eq. (13) assuming A¢ ~ w.

of the BTR model do not allow us to refine the above
simple picture. For example, the direct time dependence
of the slope relaxation is not measurable in this model:
Without rotation, the vertical vibration results in a sta-
ble configuration with strongly curved surface of high
slope after a few steps.

We measured the power spectra of the time sequences
of o, at different elementary rotational steps and the
result is plotted in Fig. 15. The spectra are consistent
with power laws with low frequency cutoffs:

Sas(f) ~ f7viad) (14)

The exponents depend on the size of the rotational steps
as

1
a+bAg

where a = 0.48 + 0.05 and b = 0.29 £ 0.03 are fitted pa-
rameters. Note that the sequences of «, were obtained
by sampling the slope after every elementary rotational
step and one vertical rearrangement. If one wants to re-
late these sequences to any experimental realization, one
should treat properly the effect of the sampling. Let us
suppose that our system is a drum rotated by a fixed
(slow enough) angular velocity w, and excited by a weak
vertical vibration of frequency w/A¢. This means that
the spectra of Fig. 15 are not only measured by dif-
ferent vibrational frequency, but different sampling rate
At = A¢/w as well. It is a well known fact that dis-
crete sampling may lead to aliasing of the Fourier spec-
tum of a continuous function [29]; thus one should check
what is the real reason for the change of y. Therefore
we performed the following test. We plotted the power
spectrum of a sequence of a, at A¢ = 1, the spectrum
which was obtained from a series of every fourth point of
a measurement at A¢ = 0.25, and finally the spectrum of
a simulation where A¢ = 1 was kept, but four BTR steps
were applied between the elementary rotational steps (see
Fig. 16). The scaling parts of the spectra are collapsed,

y(Ag) = (15)

S()

FIG. 15. Power spectra S(f) of sequences of the angle of
repose in a system of R = 90 and r = 0.5 for different rigid
rotation steps A¢ = 0.25,0.5,0.75,1.0,1.5,2.0 (from bottom
to top). The inset shows the effective exponents [Eq. (14)]
and the fit by Eq. (15).



asymptotic value belonging to A¢ = 0, i.e., to the con-
tinuous sampling.

While the power spectrum in Fig. 16 does not depend
on the ratio of disk radii r, the monodisperse system
shows again almost perfect periodicity. A single angle
of repose cannot be assigned to the slope of a monodis-
perse filling (see Fig. 9); however, the profile above the
breaking point at ~ 0.66R is approximately linear. In
Fig. 17 we plotted a sequence of the angle of this linear
part, which was obtained by a least squares fit between
the upper cutoff and the mentioned lower cutoff. The
periodic repetition of some patterns is clear.

Another effect of changing A¢ is the strengthening of
the vibrational segregation additionally to the surface
segregation. Vibrational segregation means that smaller
disks tend to sink into the bulk, which results in a more
dense segregation cloud, and a smaller number of small
disks on the surface. In Fig. 18 we plotted the ratio of
probabilities of local surface configurations consisting of
two large and two small neighboring disks for different
elementary rotation steps. After a steep decrease of this
ratio, the curve seems to show a saturation, indicating
that vibrational segregation at large enough rotational
velocities is suppressed.

Obviously the distribution of the activities also de-
pends on the parameter A¢. In Fig. 19 we plotted the
distribution function of the total activities at different el-
ementary rotational steps. The trend is clear: The larger
the rotation, the wider and flatter the distribution. More-
over, the shape of the decaying part of the curves at lower
elementary rotational steps (i.e., at higher vibrations) is
changing from the form of Eq. (11) to a pure exponential
behavior [Eq. (9)], which is characteristic for the par-
tial activities of the large disks. The distribution of the
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FIG. 16. Power spectra S(f) of sequences of the angle of ( (b)
repose in a system of R = 90 and » = 0.5. One BTR step . b T - H
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one rotation step with A¢ = 1.0 sampled once in a cycle o, " f'J R :,-4 :.'LI“. P ,-”-I AR - 7:,
(crosses). The solid line is a power law fit with an exponent 44 JJ’ i ‘l" it ':'ra it ‘7‘ l”i LS 22“". ? ihe E,'b 4
y=13. TN RT NIRRT R
S T G I R R ¢
42 4 N .f ‘_: t ‘4 t 4
. L]
which clearly shows that y should not depend on the vi-
brational frequency. Thus we can conclude that a correct 40 : . . .
estimation of the exponent of the power spectrum is the 1600 1630 1660 n 1690 1720 1750

FIG. 17. (a) Time sequence of the angle of repose a, as
a function of the number of rotational steps n in drum with
R = 90, monodisperse filling, and A¢ = 1.0. (b) An enlarged
part of (a) showing three subperiods.

activities for small disks is similar to Fig. 10(a) with a
vanishing weight in the total activities at decreasing ro-
tation; therefore we show here only the change of the
effective exponents of the scaling parts (see Fig. 20). We
obtained the following simple fit:

1

T(A¢) = 7T VA (16)

0.5 . . .
-3.0 -2.0 -1.0 0.0 1.0

In(Ad)

FIG. 18. The ratio of the weights of local surface configu-
rations Py /P, as a function of the size of the rigid rotation
step A¢ in a double logarithmic plot. The drum of R = 90
was half filled with » = 0.5.
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P(s)

FIG. 19. Normalized distribution P;(s) of total activity s
of all disks in a drum of R = 90, with » = 0.5, at different
rotational steps A¢.

where the constants are a' = 0.173 £ 0.004 and &' =
0.358 + 0.005.

From the observations above we can conclude the fol-
lowing. The stronger the vibrational segregation, the
lower the contribution of the small disks to the total ac-
tivities in the flow region. Thus the shape of the distri-
bution function of the total activities tends to coincide
with the distribution of the large disk activities, which
obeys finite-size scaling [cf. Fig. 10(b)]. In this respect
the whole system can be considered as critical. We stress
here that the presence of small disks in the assembly is
crucial: The geometrical disorder induced by the packing

1.0 ; : .
0.8 | i
06 |
1/t

04

0.2

O'O L 1 L
0.0 0.5 1.0 1.5 2.0

Ao

FIG. 20. The inverse of the exponent 7 of fits by Eq. (9) of
the distribution of small disk activities at different rotational
steps in a drum of R = 90 with » = 0.5. The solid line shows
a fit by Eq. (16).

of disks of different sizes destroys the periodicity present
in a monodisperse system [cf. Fig. 12(b) and Fig. 17]
rendering a continuous distribution of activities possible.
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